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Abstract
A general approach is presented for investigation of the anisotropy of the degree of transport
spin polarization (P) in ferromagnets both in the ballistic regime, P1,i , and in the diffusive
regime, P2,i , as a function of crystal direction. The validity of this approach is confirmed by the
benchmark calculation for the isotropic P . By this approach, we have investigated the
anisotropy of P in bcc Fe, fcc Co, fcc Ni and hcp Co. For cubic structures, P1,i shows a small
but appreciable anisotropy, due to the difference in the electronic orbital extension for spin-up
and spin-down conduction bands. However, P2,i shows an isotropic feature for the cubic
structure, as a result of the combination of its dependence on the square of electron velocity and
the lattice symmetry. On the other hand, for hcp Co, both P1,i and P2,i show a very strong
anisotropy. The large anisotropy of P1,i and P2,i in hcp Co is mainly attributed to the anisotropy
of spin-down ballistic (diffusive) conductance.

1. Introduction

Since the discovery of giant magnetoresistance (GMR) and
tunneling magnetoresistance (TMR), the topic of spintronics
has been intensively investigated because of its increasing
application to magnetic recording devices [1–5]. Despite
the differences in the configurations of various systems, they
are commonly characterized by the transfer or injection of a
spin polarized current from a ferromagnetic component into
a nonmagnetic metal or semiconductor [6, 7]. For such
a spin dependent transport, it is highly important for the
available spin-up and spin-down conductive electrons near the
Fermi level to have a relatively asymmetrical conductivity.
Therefore, the so-called degree of transport spin polarization
(P) that describes the extent of asymmetry of the spin polarized
transport current is one of the most important parameters
to determine the size of magnetoresistance. The reported
values of P have ranged from about 40% for a conventional
ferromagnetic material, such as Fe, to almost 100% in the so-
called half metallic materials [3, 8, 9]. In the latter case, the
transport current is ideally carried by only spin-up or spin-

down electrons. Some Heusler alloys, half Heusler alloys and
simple metallic oxides have been identified as half metals by
electronic structure calculations, and subsequently high values
of P have also been discovered in these materials [9–12].

Different techniques, such as spin polarized photoemis-
sion [13], point contact Andreev reflection [8] and tunneling
junction [14], are used to measure P for ferromagnetic mate-
rials. For the so-called half metals, spin polarization of these
special materials is theoretically independent of the various ex-
perimental methods. The reason is that only one spin chan-
nel has available states at the Fermi level and hence all current
must be carried only by spin-up (or spin-down) electrons. So P
in the half metal should always be expected to be 100%. How-
ever, for a regular ferromagnet, both the spin-up and spin-down
electrons make contributions to the total current. Therefore, it
is necessary for P to be defined in several different ways in
order to explain the results from the various kinds of exper-
iments. Assuming that spin-flip scattering does not exist, the
current in each spin channel is considered to be dependent only
on the characteristics of each corresponding spin subsystem,

0953-8984/08/275245+08$30.00 © 2008 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0953-8984/20/27/275245
mailto:ghwu@aphy.iphy.ac.cn
http://stacks.iop.org/JPhysCM/20/275245


J. Phys.: Condens. Matter 20 (2008) 275245 Z Y Zhu et al

and hence the definition of P can be expressed as follows [15]:

Pn = 〈N(EF)v
n
F〉↑ − 〈N(EF)v

n
F〉↓

〈N(EF)v
n
F〉↑ + 〈N(EF)v

n
F〉↓ (1)

where N and vF are electronic density of states and Fermi
velocity, respectively, ↑ (↓) stands for spin-up (spin-down)
channel and 〈 〉 denotes the integration over the whole Fermi
surface.

In the spin polarized photoemission experiment, the
conductivity of each spin channel is proportional to the
electronic density of states of each corresponding spin channel
and independent of the electronic velocity of the electrons [13].
So the definition of P with n = 0, P0, is appropriate for
the spin polarized photoemission experiment. However, in
the cases of point contact Andreev reflection and tunneling
junction, both the velocity of the conductive electrons and
the electronic density of states make contributions to the
conductivity. Therefore, the inclusion of the Fermi velocity
in the description of the conductivity of each spin channel
is necessary for the definition formula of P . When the
size of the contact is much smaller than the mean free path
of the electrons, the electrons can flow through the contact
ballistically. For such purely ballistic regime, the conductivity
of each spin channel is proportional to 〈Nv〉σ (σ is ↑ or ↓ for
spin-up and spin-down channels, respectively.) in the Fermi
sphere approximation [15, 16]. If considering the arbitrary
Fermi surface geometry, however, the conductivity of each spin
channel is proportional to 〈Nv〉σ and 〈Nv2〉σ , for a ballistic
contact with no barrier and a large barrier, respectively. On
the other hand, when the size of the contact is larger than the
mean free path of the electrons, the electronic transport lies in
the diffusive regime. Under this circumstance, the conductivity
of each spin channel is proportional to τσ

nσ

mσ
, according to the

Drude theory. τσ is the relaxation time and nσ

mσ
is sometimes

expressed as 〈Nv2〉σ and is proportional to the contribution
of the corresponding electrons to the plasma frequency [17].
Therefore, if we assume the same relaxation time in both spin
channels, the conductivity of each spin channel in the diffusive
regime is proportional to 〈Nv2〉σ . Therefore, according to the
definition formula, for low resistance ballistic contacts, P1 is
appropriate and the definition of P2 corresponds to a large
barrier and/or diffusive current [15].

Unlike scalar N , the electronic velocity v is a vector.
Therefore, 〈Nv〉 and 〈Nv2〉 should vary with crystal directions,
especially for the materials with noncubic symmetry. In other
words, both 〈Nv〉 and 〈Nv2〉 are anisotropic, which has been
verified experimentally by the ratio of conductivity in the
[100] direction to that in the [001] direction being 1.84 rather
than 1 [18]. Furthermore, for the spin dependent transport,
the intrinsic anisotropy of magnetoresistance induced by the
pure band effects has been reported in some papers [19–21].
Therefore, like in the case of conductivity, the intrinsic
anisotropy of P1 and P2 can NOT be neglected in the
investigation on spin dependent transport properties, if the
relative difference between the projections of vF for spin-up
and spin-down channels on a certain crystal direction is much
larger than that on the other directions. Compared with the
conventional definition P0, P1 and P2 should be much more

complicated because of the inclusion of v in the description of
electronic mobility. According to the definitions of P1 and P2

in (1), the anisotropic P can be written as a function of crystal
direction i :

Pn,i = 〈N(EF)v
n
F,i 〉↑ − 〈N(EF)v

n
F,i 〉↓

〈N(EF)v
n
F,i 〉↑ + 〈N(EF)v

n
F,i 〉↓

(2)

here, vF,i stands for the projection of vF on i direction. n = 1
and 2 are in accordance with the cases in ballistic and diffusive
regimes, respectively. For clarity, hereinafter in this paper, the
P defined by (2) are called the anisotropic P1,i and P2,i , and
the P defined by (1) are called isotropic P0, P1 and P2.

Recently, an approach based on the so-called tetrahedron
method has been reported [22] to calculate P under the
isotropic definition in both ballistic and diffusive limits. In that
report, the anisotropic distribution of the electronic velocity
vectors in real space is neglected. However, as stated above,
the intrinsic anisotropy of P in both ballistic and diffusive
regimes should be an important phenomenon, especially in
the noncubic compound. So the calculation of anisotropic
P1,i and P2,i is expected for the deeper understanding of the
spin dependent transport properties in ferromagnets with both
cubic and noncubic lattices. In this paper, we present a general
approach to evaluate P1,i and P2,i with high accuracy. Details
of the approach are explained in section 2. We calculate the
anisotropic P1,i and P2,i of body-centered cubic (bcc) Fe, face-
centered cubic (fcc) Co, fcc Ni and hexagonal-close-packed
(hcp) Co. Related results and discussions are given in section 3.
Additionally, at the beginning of this section, the calculating
method is validated by the benchmark calculation for isotropic
P0, P1 and P2 of bcc Fe and fcc Ni, in which the anisotropic
distribution of the electronic velocity vectors in real space is
neglected [22]. The conclusions are drawn in section 4.

2. Methodology

To calculate 〈N(EF)v
n
F〉σ (σ = ↑ and ↓ for spin-up and spin-

down channel, respectively) for the isotropic P0, P1 and P2 as
given in (1), the following expression is used:

〈N(EF)v
n
F〉σ

= 1

(2π)3

∑

λ

∫
vn

F,k,λ,σ δ(Ek,λ,σ − EF) d3k

= 1

(2π)3

∑

λ

∫
vn−1

F,k,λ,σ dSF (3)

here k, λ and σ denote wavevector, band and spin indexes,
respectively. Ek,λ,σ stands for the electronic energy in the band
λ with spin σ and the wavevector k. dSF stands for the area of
an Fermi surface element.

Similarly, the form of 〈N(EF)v
n
F,i 〉σ in anisotropic P1,i and

P2,i can be obtained by substituting vn
F,k,λ,σ,i for vn

F,k,λ,σ (the
former is the projection of the latter on i direction) in (3) as:

〈N(EF)v
n
F,i 〉σ

= 1

(2π)3

∑

λ

∫
vn

F,k,λ,σ,iδ(Ek,λ,σ − EF) d3k

= 1

(2π)3

∑

λ

∫
vn

F,k,λ,σ,i

vF,k,λ,σ

dSF. (4)
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To obtain the dSF in (3) and (4) for numerical calculation,
the Fermi surface should be first divided into large number
of surface elements to make their areas very small; next the
precondition of electrons with the same velocity is satisfied
within a allowable tolerance in this area. Subsequently, the
energy gradient of the electron in this area should be calculated
in the reciprocal space to evaluate the Fermi velocity in (3)
and its projection on the i direction in (4). In the following
paragraph, we will present details of the said steps.

As a kind of isosurface in the reciprocal space, the Fermi
surface can be obtained using the so-called Marching Cubes
Algorithm [23], in which Fermi energy is regarded as the
isovalue. As described in [24], the obtained Fermi surface is
composed of many triangles. If the number of grid points for
the input energy data is large enough, the number of triangles
in a Fermi surface will also be big enough. So, the area of
this kind of triangle can be used as the area element dSF in the
evaluation of (3) and (4), and in the following the characters
of the electrons in this area element will be represented by the
character of the electron at the center of the triangle.

For an electron at the center of a triangle, its Fermi
velocity projections on the three coordinate axes of the
orthogonal coordinate system, vF,a (a = x , y and z) can be
written as:

vF,a = 1

h̄

(
∂ E

∂ka

)

F

= 1

2h̄

(
EkF+δka − EF

δka
+ EF − EkF−δka

δka

)

= 1

2h̄

(
EkF+δka − EkF−δka

δka

)
. (5)

The energy values at (near) the center of this triangle, EF

(EkF±δka ), can be obtained by linear interpolation of the energy
values at the neighboring grid points. δka has been set to a
small enough value in order to obtain vF,a with a satisfactory
accuracy.

For crystal direction i([l, m, n]) and the basis vectors of
the crystal structure (r[1,0,0] = ra,xi + ra,yj + ra,zk, r[0,1,0] =
rb,xi + rb,yj + rb,zk and r[0,0,1] = rc,xi + rc,yj + rc,zk), the
projection of vF on the i direction (i.e., a vector direction along
the i direction, ri/|ri |), vF,i , can be expressed as:

vF,i = 1

|ri |vF · ri = 1√
r 2

x + r 2
y + r 2

z

× (vF,x · rx + vF,y · ry + vF,z · rz) (6)

where
ri = rxi + ryj + rzk (7)

and

rt = l · ra,t + m · rb,t + n · rc,t , (t = x, y, z). (8)

Now, 〈N(EF)v
n
F〉σ and 〈N(EF)v

n
F,i 〉σ can be found from

the summation of all the contributing triangles on the Fermi
surface of all the conduction bands, so various types of P can
be calculated. It should be pointed out that in the case of n = 1,
i.e. in the ballistic limit, the average over the whole Fermi
surface should be zero because the spatial inversion symmetry
demands N(k) = N(−k) and v(k) = −v(−k). In order to
avoid a zero value of 〈N(EF)vF〉σ and 〈N(EF)vF,i 〉σ , we have

Table 1. The isotropic P0, P1 and P2 (in per cent) at the Fermi
energy for bcc Fe, fcc Co and fcc Ni calculated in the present work.
For comparison, the relevant values, which are obtained from
previous works, are also listed.

bcc Fe fcc Co fcc Ni
P0 P1 P2 P0 P1 P2 P0 P1 P2

52.5a 36.1a 33.1a −75.8a −31.1a 21.7a −79.6a −43.0a 10.8a

60b 35b 24b −80b −49b 0b

54c 42c 37c −80c −47c 15c

a From the present work.
b From reference [15].
c From reference [22].

only used terms with positive velocity values (i.e. vF > 0 and
vF,i > 0) in the summation process.

The last task is to produce the energy distribution in the
first Brillouin zone by first-principles calculation. In this paper,
for bcc Fe (a = 2.866 Å), fcc Co (a = 3.544 Å), fcc Ni
(a = 3.524 Å) and hcp Co (a = 2.507 Å, c = 4.069 Å), the
electronic structure calculations have been performed using the
self-consistent full-potential linearized-augmented plane-wave
method based on the local spin-density approximation within
the density functional theory [25, 26]. The self-consistency is
achieved at 455 k-points for bcc Fe, fcc Co and fcc Ni and
728 k-points for hcp Co in each irreducible Brillouin zone. To
calculate the energy distribution in the reciprocal space, the
first full Brillouin zone is divided into 125000 k meshes for
bcc Fe, fcc Co and fcc Ni and 108 000 k meshes for hcp Co,
respectively. An error of less than 2% has been obtained by a
sufficiently large number of k meshes. The cutoff energy is set
at 400 eV for all calculations.

3. Results and discussions

3.1. Isotropic P0, P1 and P2 for bcc Fe, fcc Co and fcc Ni

For bcc Fe, fcc Co and fcc Ni, the calculated isotropic P0, P1

and P2 as a function of the energy are shown in figure 1. First
we focus on the values at the Fermi energy, which is relevant to
the transport properties. In table 1, these values, as well as the
values reported in previous papers [15, 22], are listed. For bcc
Fe, the values of P0, P1 and P2 at the Fermi energy are always
positive despite the different weight of electronic velocity in
the calculations. For fcc Co and fcc Ni, however, a kind
of sign reversal from negative to positive values takes place
from P0 and P1 to P2 when the weight of electronic velocity
becomes increasingly greater in the calculations. Considering
the error caused by different approximations in electronic
structure calculations [15], our results are in good agreement
with those previous reports, which confirms the validity of the
method in this work.

To understand fully the sign reversal in fcc Co and fcc Ni,
we plot the spin polarized density of states for bcc Fe, fcc Co
and fcc Ni in figure 2. As can be seen, around the Fermi energy,
for fcc Co and fcc Ni their spin-up density of states shows an
s-character, whereas their spin-down density of states show a
d-character, as in the case of fcc Ni reported by Mazin [15].
Compared with a d-characterized electron, as is well known,

3
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Figure 1. Calculated isotropic P0, P1 and P2 for (a) bcc Fe, (b) fcc
Co, and (c) fcc Ni.

an s-characterized one has much a larger velocity and smaller
density of states, which means that the contribution of the spin-
up channel to the total current is larger than that of the spin-
down channel. Hence, sign reversals will take place when the
weight of electronic velocity becomes increasingly greater. On
the other hand, for bcc Fe, both spin-up and spin-down density
of states show d-character at the Fermi energy and the density
of states are large for both spins, which leads to the absence
of the sign reversal in the case of bcc Fe. Thus, it is the
different features between spin-up and spin-down conductive
electrons that lead to the sign reversal. This phenomenon can
also be found in the calculation for the anisotropic P1,i and P2,i

as will be shown below. The comparison between figures 1
and 2 shows that P0, P1 and P2 will be changed abruptly when
the s-characterized feature switches on for the spin-up or spin-
down channel. For example, for fcc Ni abrupt variations of
P0, P1 and P2 are observed at 0.6 eV below and 0.4 eV above
Fermi energy, which is consistent with the switching on of an
s-characterized density of states for the spin-up and spin-down
channels, respectively.

3.2. Anisotropic P1,i and P2,i for cubic structures

To explore the intrinsic anisotropy of P in both ballistic and
diffusive regimes for materials with a cubic structure, we have
calculated anisotropic P1,i and P2,i at the Fermi energy for bcc
Fe, fcc Co and fcc Ni as a function of crystal direction. The
crystal direction, i , varies from [0, 0, 1] to [1, 1, 0] in the
(−1, 1, 0) plane and from [1, 1, 0] to [0, 1, 0] in the (0, 0,
1) plane.

3.2.1. P2,i for bcc Fe, fcc Co and fcc Ni. In all directions, P2,i

exhibits constant values of 33.1%, 21.7% and 10.8% for bcc

Figure 2. Spin polarized electronic density of states of (a) bcc Fe,
(b) fcc Co, (c) fcc Ni, and (d) hcp Co. The up arrow and down arrow
stand for spin-up and spin-down electrons, respectively.

Figure 3. (a) and (b) Spin-up and spin-down ballistic conductance,
〈Nvi 〉↑ and 〈Nvi 〉↓, respectively, and (c) and (d) anisotropic P1,i as a
function of the crystal direction i for bcc Fe.

Fe, fcc Co and fcc Ni, respectively. The values of anisotropic
P2,i are the same as the corresponding isotropic P2. So, P2,i

shows an isotropic feature. According to (2) and (4), P2,i is a
function of 〈Nv2

i 〉σ . For a physical v2
i dependent parameter,

as proved analytically in the appendix, its integration over
the whole Fermi surface should be a constant for a material
with cubic symmetry. Therefore, the isotropic feature of P2,i

results from the combination of its v2
i dependence and the cubic

symmetry of the crystal structure in bcc Fe, fcc Co and fcc Ni.

3.2.2. P1,i for bcc Fe, fcc Co and fcc Ni. As pointed out in
the appendix, if P is not v2

i dependent, as in the case of P1,i ,
it will no longer be isotropic. The calculated P1,i for bcc Fe,
fcc Co and fcc Ni are shown in the lower parts of figures 3–5,
respectively. To investigate how P1,i responds to the variation
of the crystal direction, the relevant ballistic conductance of
spin-up and spin-down channels as a function of i , 〈Nvi 〉↑
and 〈Nvi 〉↓ are also plotted in the upper parts of figures 3–
5. For bcc Fe as shown in figures 3(c) and (d), the minimum
and maximum values of P1,i are found to be 33.4% and 37.7%
in the 〈0, 0, 1〉 and 〈1, 1, 1〉 directions, respectively. For fcc
Co and fcc Ni, however, negative values of P1,i are observed
in figures 4(c)–(d) and 5(c)–(d), respectively. For fcc Co, the

4
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Figure 4. The same as in figure 3, but for fcc Co.

Figure 5. The same as in figure 3, but for fcc Ni.

minimum absolute P1,i value of 28.9% is found in the 〈0, 0, 1〉
direction and the maximum one is 33.9% in the 〈1, 1, 0〉
direction. The maximum and minimum absolute values of P1,i

for fcc Ni are calculated respectively as 44.0% in the 〈0, 0, 1〉
and 〈1, 1, 1〉 directions and 42.4% in the 〈81, 100, 0〉 direction
(having an angle of 6 degrees away from their neighboring
〈1, 1, 0〉 directions). It should be mentioned that as in the case
of the calculation of isotropic P1 and P2, a sign reversal is
found in the calculation of anisotropic P1,i and P2,i for fcc Co
and fcc Ni, but it is absent for bcc Fe.

As regards the P1,i of bcc Fe, fcc Co and fcc Ni, two
important features can be obtained. The first one is related to
the degree of anisotropy, ω, which is defined by the ratio of the
difference between the minimum and maximum absolute P1,i

(or P2,i ) values to the minimum absolute P1,i (or P2,i ). ω is
0.17 for fcc Co and 0.13 for bcc Fe, which are much larger than
that of 0.04 for fcc Ni. The second one is that their extrema
appear in different directions for bcc Fe, fcc Co and fcc Ni as
mentioned above. According to (2), the absolute value of P1,i

is determined by the difference between 〈Nvi 〉↑ and 〈Nvi 〉↓.
Therefore, the two features of P1,i should be derived from the
various types of dependence of 〈Nvi 〉↑ and 〈Nvi 〉↓ on i , which
is clearly shown in the upper parts of figures 3–5. For fcc Ni,
the direction dependence of 〈Nvi 〉↑ is similar to that of 〈Nvi 〉↓,
which leads to a rather weaker anisotropy of P1,i . In contrast,
an obvious difference between the direction dependences of
〈Nvi 〉↑ and 〈Nvi 〉↓ is found for bcc Fe and fcc Co. Taking bcc
Fe as a typical example, 〈Nvi 〉↑ reaches its maximum in the

〈1, 1, 1〉 direction and 〈Nvi 〉↓ nearly reaches its minimum in
the same directions, which leads to a much stronger anisotropy
of P1,i . In the same way, the second feature can be explained by
considering the direction dependence of ballistic conductance.

In general, a large overlap of conduction electrons
between the neighboring atoms gives rise to the widening
of the conduction bands and hence a larger electron velocity
component in that direction. As a result, the above-
mentioned crystal direction dependence of 〈Nvi 〉↑ and 〈Nvi 〉↓
is determined by orbital extension of the spin-up or spin-down
conduction electrons of an atom and the relative positions of its
neighboring atoms. In the following paragraph, taking bcc Fe
and fcc Ni as an example, we will use this scenario to explain
the dependence of 〈Nvi 〉↑ and 〈Nvi 〉↓ on i .

In the case of fcc Ni, crossing the Fermi level
there is one spin-up band with s-character, one spin-down
band with s-character and three spin-down bands with d-
character [15]. When the s-characterized electrons exist, the
ballistic conductance, as well as the anisotropy of 〈Nvi 〉↑
and 〈Nvi 〉↓, are mainly determined by these s-characterized
electrons. The s orbital has an isotropically spherical
symmetry and the overlapping of the s orbitals and the ballistic
conductance should be determined by the distance between the
neighboring atoms. In fcc Ni, the nearest neighboring Ni atom
is located in the 〈1, 1, 0〉 directions and the second and the
third nearest neighboring Ni atoms are located in the 〈1, 0, 0〉
and 〈1, 1, 1〉 directions, respectively. Therefore, the s orbital
overlaps to its greatest degree in the 〈1, 1, 0〉 directions and
the least degree in the 〈1, 1, 1〉 directions. That is why both
the smallest 〈Nvi 〉↑ and 〈Nvi 〉↓ for fcc Ni are observed in the
〈1, 1, 1〉 directions and the largest ones are observed near the
〈1, 1, 0〉 directions, as shown in figures 5(a) and (b).

In the case of bcc Fe, crossing the Fermi level there are one
s-characterized and one d-characterized spin-up bands [15].
〈Nvi 〉↑ of bcc Fe is mainly controlled by the s-characterized
electrons. In the bcc structure the nearest, the second
and the third nearest neighboring atoms are located in the
〈1, 1, 1〉, 〈1, 0, 0〉 and 〈1, 1, 0〉 directions, respectively. Thus,
〈Nvi 〉↑ reaches its maximum and minimum at in the [1, 1,
1] direction and [1, 1, 0] direction, respectively, as shown
in the figures 3(a) and (b). On the other hand, there are
only four d-characterized spin-down bands crossing the Fermi
energy. As no s-characterized band is observed for spin-down
conduction electrons, 〈Nvi 〉↓ will be determined by the d-
characterized electrons with much stronger anisotropy than
s-characterized ones. So, the crystal direction dependence
of 〈Nvi 〉↓ significantly differs from that of 〈Nvi 〉↑. It is
well known that there are five d orbitals of the xy, yz, zx ,
3z2 − r 2 and x2–y2 symmetries. The d orbitals with xy, yz
and zx symmetries have extensions to the directions between
the coordinate basis vectors, whereas those with 3z2–r 2 and
x2–y2 symmetries have extension to the directions along the
coordinate basis vectors. Three of the four d-characterized
spin-down conduction bands have orbitals extending to the
directions between the coordinate basis vectors, and one has
an orbital extending along the coordinate basis vectors [15].
The extension of these d orbitals leads to stronger electronic
overlapping in the 〈1, 0, 0〉 and 〈1, 1, 0〉 directions and thus

5
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Figure 6. (a)–(c) Spin-up and spin-down ballistic conductance,
〈Nvi 〉↑ and 〈Nvi 〉↓, as a function of the crystal direction in hcp Co.
(d)–(f) Anisotropic P1,i as a function of i in hcp Co.

a larger ballistic conductance in these directions, resulting in
nearly the smallest value in the 〈1, 1, 1〉 direction as shown in
figure 3(a).

3.3. Anisotropic P1,i and P2,i for hcp Co with noncubic
structure

In the noncubic materials, the transport properties ex-
hibit rather anisotropic character experimentally and theoret-
ically [18], which is ascribed to the breaking down of the cubic
symmetry of the Fermi surface and the anisotropic distribution
of the electronic velocity vectors in real space [18]. So we ex-
pect a kind of anisotropy of P induced by the breaking down
of the cubic symmetry. To that end, we take hcp Co as an ex-
ample and calculate P1,i and P2,i as a function of i . i ranges
from [0, 0, 1] to [1, 1, 0] in the (−1, 1, 0) plane, from [1, 1, 0]
to [−1, 1, 0] in the (0, 0, 1) plane and from [−1, 1, 0] to [0, 0,
1] in the (1, 1, 0) plane in the hcp structure.

In figures 6 and 7, the results for P1,i and P2,i of hcp Co
are shown respectively. Figures 6(d)–(f) show that negative
values are observed for P1,i in all directions. The minimum
and maximum absolute values of 5.8% and 34.5% are found
in the 〈0, 1, 0〉 and 〈0, 0, 1〉 directions, respectively. A small
but appreciable anisotropy of P1,i is also found in the (0, 0, 1)
plane. On the contrary, positive values of P2,i are observed, as
shown in the figures 7(d)–(f). The minimum and maximum
values of 15.4% and 43.4% are obtained in the 〈0, 0, 1〉
direction and in the (0, 0, 1) plane, respectively. Comparing
the results in figures 7(d)–(f) with those in figures 6(d)–(f),
almost the same values of P2,i are found in the (0, 0, 1) plane
in contrast to the case of P1,i . In addition, as in the case of the
cubic materials mentioned above, the sign reversal from P1,i

to P2,i for hcp Co is also derived from the s-character of the
spin-up electrons and the d-character of the spin-down ones at
the Fermi energy, as indicated in the spin polarized density of
states for hcp Co in figure 2. The anisotropy of P1,i is stronger
than that of P2,i in the (0, 0, 1) plane, due to the much stronger

Figure 7. (a)–(c) The same as in figure 6, but for the spin-up and
spin-down diffusive conductance, 〈Nv2

i 〉↑ and 〈Nv2
i 〉↓. (d)–(f) The

same as in figure 6, but for the anisotropic P2,i .

anisotropy of 〈Nvi 〉↑ in this plane, as shown in figures 6(a)–(c)
and 7(a)–(c).

Most importantly, in contrast to the case of fcc Co, much
stronger anisotropy is observed for both P1,i and P2,i of hcp
Co. For P1,i of hcp Co, ω is 5.95, much larger than the
corresponding 0.17 of fcc Co. On the other hand, in contrast to
the isotropic feature of P2,i in fcc Co, ω is 2.82 for P2,i in hcp
Co. Figures 6(a)–(c) and 7(a)–(c) show that the dependence
of 〈Nvi 〉↑ (and 〈Nv2

i 〉↑) on crystal direction differs largely
from that of 〈Nvi 〉↓ (and 〈Nv2

i 〉↓). 〈Nvi 〉↑ and 〈Nv2
i 〉↑ reach

their minimum in the 〈0, 0, 1〉 directions (maximum in the
(0, 0, 1) plane), 〈Nvi 〉↓ and 〈Nv2

i 〉↓ reach their maximum
(minimum) in the same directions. In addition, from the spin
polarized density of states of hcp Co in figure 2, s-characterized
conductive electrons and d-characterized ones are observed for
spin-up and spin-down channels, respectively. Because the
anisotropy of the orbital extension of the d orbital is stronger
than that of the s orbital, the variation of 〈Nvi 〉↓ (and 〈Nv2

i 〉↓)
with i is much greater than that of 〈Nvi 〉↑ (and 〈Nv2

i 〉↑), which
can be seen in figures 6(a)–(c) and 7(a)–(c). According to (2),
the large anisotropy of P1,i (P2,i ) in hcp Co is mainly derived
from the anisotropy of 〈Nvi 〉↓ (and 〈Nv2

i 〉↓).

4. Conclusion

We have presented a general approach to evaluating with high
accuracy the anisotropic degree of transport spin polarization
in the ballistic regime, P1,i and in the diffusive regime, P2,i .
Its validity is confirmed in the case for the isotropic degree of
transport spin polarization in bcc Fe and fcc Ni by comparison
with previous results. Considering the anisotropic distribution
of the electronic velocity vectors in real space, P1,i and P2,i ,
as functions of crystal direction, can be deduced according
to the band structures of bcc Fe, fcc Co, fcc Ni and hcp
Co. For cubic crystal structures, P1,i shows a small but
appreciable anisotropy, due to the difference in the electronic
orbital extension for spin-up and spin-down conduction bands.
Meanwhile, P2,i shows an isotropic feature, which is a result of
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the combination of its v2
i dependence and the cubic symmetry.

Noticeably, due to the breaking down of the cubic symmetry
of the crystal in hcp Co, both P1,i and P2,i show a strong
anisotropy and the value of ω reaches 5.95 for P1,i and 2.82
for P2,i . The large anisotropy of P1,i (P2,i ) in hcp Co mainly
results from the anisotropy of spin-down ballistic (diffusive)
conductance, i.e. 〈Nvi 〉↓ (and 〈Nv2

i 〉↓). In one word, we
have got the intrinsic anisotropy of the degree of transport
spin polarization. This is important for a better understanding
of the spin dependent transport properties of a ferromagnetic
material.
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Appendix

For a material with cubic crystal structure, the integration
of a physical parameter proportional to v2

i over the whole
Fermi surface will be proved constant, i.e. such a parameter
is independent of the i direction. For a cubic structure, the
energy distribution for a given energy band in reciprocal space
satisfies the following relations:

E = E(±k1,±k2,±k3)

= E(±k1,±k3,±k2)

= E(±k2,±k1,±k3)

= E(±k2,±k3,±k1)

= E(±k3,±k2,±k1)

= E(±k3,±k1,±k2) (A.1)

where E(k1, k2, k3) stands for the electronic energy at
k(k1, k2, k3) = k1kx + k2ky + k3kz . If E = E0, an isosurface
can be obtained, and if E0 equals to the Fermi energy, this
isosurface is the Fermi surface. If k(k1, k2, k3) is on the Fermi
surface, the k-points of k(−k1,−k2,−k3), k(±k1,±k3,±k2),
k(±k2,±k1,±k3), k(±k2,±k3,±k1), k(±k3,±k2,±k1) and
k(±k3,±k1,±k2) should also be on the Fermi surface.

In the following part, firstly we will deduce the relations
between the electronic velocity vectors of these 48 equivalent
k-points. Because of the fact that the equivalent points
are connected by symmetry operations (which correspond to
rotations and reflections) and rotations and reflections of a
vector are orthogonal transformations, the energy gradients at
these equivalent k-points have the same lengths. Therefore, the
velocity vector, which is proportional to the energy gradient in
the reciprocal space, has the same absolute value, |v|, for all
the 48 equivalent k-points.

Next, we will prove that the integration of a physical
parameter proportional to v2

i over the whole Fermi surface
is constant. Given a crystal direction i , ri = cos θ1rx +
cos θ2ry + cos θ3rz (cos2 θ1 + cos2 θ2 + cos2 θ3 = 1), the
integration can be written as follows in the summation form:

〈v2
i 〉 =

∑

k∈FS

[v(k1, k2, k3) · ri]2 (A.2)

where FS stands for the Fermi surface. If the Fermi surface
is divided into 48n parts and then classified into n groups and
there are 48 equivalent k-points in each group, the summation
form can be written as the summation of n terms as

∑

k∈Gn

[v(k1, k2, k3) · ri]2 (A.3)

where Gn denotes the nth group. As for the k-point group,
k(±k1,±k2,±k3), k(±k1,±k3,±k2), k(±k2,±k1,±k3),
k(±k2,±k3,±k1), k(±k3,±k2,±k1) and k(±k3,±k1,±k2),
for example, the relevant summation term can be expressed as:

∑

k∈Gn

[v(k1, k2, k3) · ri]2

= 4
{[v(k1, k2, k3) · ri]2 + [v(k2, k3, k1) · ri]2

+ [v(k3, k1, k2) · ri]2 + [v(−k1, k2, k3) · ri]2

+ [v(−k2, k3, k1) · ri]2 + [v(−k3, k1, k2) · ri]2

+ [v(k1,−k2, k3) · ri]2 + [v(k2,−k3, k1) · ri]2

+ [v(k3,−k1, k2) · ri]2 + [v(−k1,−k2, k3) · ri]2

+ [v(−k2,−k3, k1) · ri]2 + [v(−k3,−k1, k2) · ri]2
}

= 16(v2
1 + v2

2 + v2
3) = 16|v|2. (A.4)

That is to say, each of the n summation terms in (A.3), as
well as the value of whole (A.3), show constant values and are
independent of i . So far, we have proved that the integration
of a physical parameter proportional to v2

i over all the Fermi
surface is constant and independent of the i direction.

Finally, we would like to emphasis that the isotropic
feature of such a physical parameter originates from its v2

i
dependence and the cubic symmetry of the crystal structure,
which leads to a complete cancelation of the interaction term
in the scalar products in (A.4). But, for a vi dependent physical
parameter, such an integration can not be i independent any
more because the interaction term can not be canceled out
after the summation. Therefore, for a physical parameter
proportional to vi , its integration will not be a constant value
for all crystal directions.
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